
Space Physics Interactive Data Resource
SPIDR

Web Services Guide
REST API v1,v2

Version 3.0
May 2010

Contents

Contents ...2	
Introduction ...3	
Data Sources ..3	
Data Source Interface ..3	
Basic REST API Summary..4	

Obtaining Images...4	
Obtaining Data...7	
Available Data Parameters to GetData..9	
Obtaining Metadata ...11	
Available Metadata Parameters to GetMetadata ...12	

Example Basic REST Clients ..13	
IDL Rest Client..14	
MATLAB REST Client...14	
Python REST Client ..14	
Perl REST Client ...14	

Advanced Usage ..15	
Common Data Model ..15	
Common Query Language...16	
Asynchronous RESTful Data Service ...17	
SPIDR Advanced RESTful Web Service By Example ...20	
Metadata ..20	
Synchronous get data...20	
Asynchronous Data Requests ..22	

Introduction

This document is intended for software developers who are creating client applications
that connect to SPIDR, and for end users who wish to know more about these interfaces into
SPIDR (people using one of the existing Web Service clients for example). This document gives
an architectural overview of SPIDR’s RESTful web service implementation, to give a sense of
what you as a client developer or user are interacting with, as well as detailed information for
each service currently provided. SPIDR provides a RESTful API that includes a variety of
capabilities described below, designed as a means for easy programmatic access to its data and
metadata holdings. If you need to create a simple script or a more complicated client to obtain
data or metadata from SPIDR, this document provides details and examples to do just that. There
are several existing clients written in various programming languages that you may use as a
starting point as well, referenced below. If you are a SPIDR user interested in general help or the
web interface, please refer to the normal SPIDR User's Guide, or SPIDR's help features.

Data Sources

One of the main features of this interface is the wide range of supported data sources, including:

• Weather reanalysis databases NCEP25 and ERA40.

• Weather forecast from NWS.

• DMSP satellite data granule databases from NOAA.

• Several solar image databases from NOAA.

• Sea Surface Temperature (SST) gridded database from NOAA.

• Generic frontend to SPIDR databases from NOAA.

Data Source Interface

All database connection classes are programmed in Java and implement the common Data
Source Interface (DSI), which has the following methods:

• boolean isSupportCdm() – shows if the resource returns CDM-compatible data.

If so, further transformation of data is possible.

• org.w3c.dom.Document getMetadata() – returns the data resource metadata.

• DataRequestBean getData(DataRequestBean request) – the most

common method for data retrieving from data source.

• DataRequestBean downloadData(DataRequestBean request) – the

method is used for transferring large amounts of data, mostly asynchronous.ly Stores data

to a storage in the requested format and returns the link or another ID, which helps user

to download data.

• DataRequestBean shiftData(DataRequestBean request) – a method

to work with data that can be represented in granule format (e.g. orbital segments). The

call moves the current viewable granule object to another one relatively to current.

• DataRequestBean viewData(DataRequestBean request) – requests the

visualization of data. Each data resource has its own format of visualization.

• String outputData(Object data, String format) – converts the data to

a requested format. The method is usually called inside an activity when a specific data

output format is requested.

This limited number of functions simplifies the data queries to multiple resources using either
SOAP requests to the OGSA-DAI activities or REST web-service interface to the OGSA-DAI
engine.

Basic REST API Summary

The REST interface provides the means to obtain data and metadata, but it also has the
ability to provide high quality image plots (PNG format). REST calls are very straight forward
conceptually, and amount to constructing a URL with the appropriate fields. Creating a REST
call for SPIDR consists of formulating your base URL, and then adding the additional pieces you
need to accomplish your desired goal.

The base URL will typically be http://spidr.ngdc.noaa.gov/spidr/servlet/, or will reference

one of SPIDR's other worldwide mirrors. What you tack on to the base URL will vary based on
whether you want data, metadata, or images, and for which parameters and when. Each URL is
composed of three pieces common to both data and metadata, however parameters will vary.
URL structure is therefore comprised of a prefix and method, followed by a query string which is
a list of parameters that make up the call. A few are required, and some are optional. At the
highest level, you will structure your URLs as follows:

<prefix>/<method>?<query_string>

The values you use for each of these pieces are detailed below, based on the type of call you're
making.

Obtaining Images

Recall the template

<prefix>/<method>?<query_string>

Which in the case of image plots relies on the GetData method, so the first two components of
the call would be as follows (assuming you're using the primary site)

http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?

All that remains is the query string, and the following table details the required and optional
fields for this call (bold italic are required).

Table 20 – GetData, image parameters

Parameter Description

Width Width of plot, in pixels. Optional. If not
specified, the plot is auto-scaled.

Height Height of plot, in pixels. Optional. If not
specified, the plot is auto-scaled

marks Optional. Allows one to specify non-default
attributes of a plot.
Allowed values: dots, points, none

representation Optional.
Allowed values: bars, line (default)

color Optional. Only applies to format=image
If not specified, SPIDR will choose.
A semi-colon delimited list (1-1 for param
items) of hexadecimal color definitions.
e.g.
param=foF2.BC840 => color=0x00ff00
param=foF2.BC840;foF2.WP937 =>
color=0xff00ff;0x00ff00

format Required. For image plotting, the only
available value is ‘image’

dateFrom Required. Defines the start time from which
to obtain data

dateTo Required. Defines the stop time to obtain data
until.

param Required. Defines the data set from which
data are obtained

One nice thing about RESTful web services is that examples can easily be provided through a
web browser. Here are several examples that illustrate some of the capabilities of the REST web
services. Using the table above, you can construct an image with varying height, width, coloring,
and combined data sets.

Image/Plotting Examples

A line plot of the foF2 ionospheric parameter for the Boulder ionosonde, with the following call
parameters for the <query_string> portion of the template

• format=image
• param=foF2.BC840
• dateFrom=20071225
• dateTo=20080101
• marks=none
• height=200

Complete URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=image¶m=foF2.BC840&dateFrom
=20071225&dateTo=20080101&marks=none&height=200

Which produces the following image

The same parameter, for the same period of time, only for two stations this time, Boulder and
Wallops Island, with the following call parameters for the <query_string> portion of the template

• format=image
• param=foF2.BC840;foF2.WP937
• dateFrom=20071225
• dateTo=20080101
• marks=none
• height=200

Complete URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=image¶m=foF2.BC840;foF2.WP9
37&dateFrom=20071225&dateTo=20080101&marks=none&height=200

Here’s a bar chart of KP, using the following parameters in the <query_string> portion of the
template

• format=image
• param=index_kp
• dateFrom=20090924
• dateTo=20091001
• representation=bars
• height=200

Complete URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=image¶m=index_kp&dateFrom=2
0090924&dateTo=20091001&representation=bars&height=200

And finally, a line plot with marks, for the same data as the other ionosonde examples, with the
following parameters (to help visualize outliers for example), and custom colors filling out the
<query_string> portion of the template

• format=image
• param=foF2.BC840;foF2.WP937
• dateFrom=20071225
• dateTo=20080101
• marks=dots
• height=200
• color=0xff00ff;0x00ff00

Complete URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=image¶m=foF2.BC840;foF2.WP9
37&dateFrom=20071225&dateTo=20080101&marks=dots&height=200&color=0xff00ff;0x00ff
00

Obtaining Data

Again, recall the REST call template

<prefix>/<method>?<query_string>

In the case of data, it relies on the GetData method, so the first two components of the call would
be as follows (assuming you're using the primary site)

http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?

All that remains to complete the call is the query string, and the following table details the
required and optional fields for this call (bold italic are required).

Table 21 – GetData data parameters

Parameter Description

format Required. For obtaining data, there are
several format options available currently,
and they change the behavior of the response
as well as the data given.

The available values are:

‘matlab’ – returns a URL to a zip file
containing data files formatted for use by
matlab applications

‘xml’ –returns a URL to a zip file containing
data in XML format

‘zip’ – returns a URL to a ZIP file containing
files in SPIDR’s proprietary ASCII format

‘ascii’ – returns a data stream containing the
requested data in SPIDR’s proprietary ASCII
format.

‘csv’ – returns a data stream containing the
requested data in CSV format, with the
following fields:

time, value, qualifier, description

not all fields are applicaple to all data sets
though.

dateFrom Required. Defines the start time from which
to obtain data

dateTo Required. Defines the stop time to obtain data
until.

param Required. Defines the data set from which
data are obtained. Full enumeration in the
next section.

The GetData call has a field called ‘param’ which determines the dataset from which data are
obtained. SPIDR has dozens of datasets, many of which have multiple formats, so it can be
difficult to determine which dataset you’re after. This is where the self describing feature of the
REST web services come into play. You can query the GetData service to find out which
parameters it supports. The param field is a period delimited triplet composed of
‘param.platform.section’. Not all params have all three components, some are just the first. Other
datasets provide optional drill down capabilities to select a specific station and data format via

this triplet. The best way to find out more about the param is to query the GetData service by
passing it a ‘describe’ option. More details regarding this follow.

Available Data Parameters to GetData

 At present, all of SPIDR’s time series data are available from the RESTful web service
interface, which amounts to 220 different possible parameters (not including narrowing
elements). As stated, the parameter field consists of a triplet of ‘param.platform.section’. In the
cases where only one component of the triplet is defined, e.g. index_kp, no other pieces are
needed or used, ‘param=index_kp’ is all that’s allowed. In other words, the other components of
the triplet allow you to narrow your results for datasets where narrowing is supported. The full
mapping for ‘param=’ is too large to include here, so it is available dynamically from the
GetData service itself, via a call to: http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?describe
You can further query, with a parameter and portions of the triplet where available, to find more
information including which stations are available, which sections, and which time ranges.

 The describe call allows you to drill down by providing a parameter for which you want
more information. For example, if you know you want the foF2 ionosphere parameter, but you
don’t know which stations are available, you can make a describe call to obtain the list of
available stations. If you know that you want foF2 and the BC840 station for example, you can
call describe with param=foF2.BC840 to find the available time range for that data set.

The GetData describe call supports three tiers of information. The first tier returns all of the
available parameters. e.g.

http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?describe

The second tier returns available stations, based on a given parameter. e.g.
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?describe¶m=cri

The third tier supplies the available time range for a given parameter + station. e.g.
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?describe¶m=cri.BKSN

Using all of this information, constructing a complete call to obtain data is fairly straightforward,
the hardest part is figuring out how to access the dataset you’re after, which as described above,
is where the describe feature is used. Below are some specific examples for obtaining data.

Data Examples

All of the data examples will focus on the ‘ascii’ and ‘csv’ formats. The default zip file format
doesn’t have much to show, since it merely responds with a URL from which you download the
file that contains the same data as the ‘ascii’ call.

To begin, here’s a small chunk of Kp index data, in CSV format, with the components of the
<query_string> portion of the template:

• format=csv
• param=index_kp
• dateFrom=20090924
• dateTo=20091001

Complete URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=csv¶m=index_kp&da
teFrom=20071225&dateTo=20080101

Which will give you something similar to the following if you open the URL in your web
browser.

The next example is the same data set, in SPIDR’s legacy proprietary ASCII format with the
following <query_string> components.

• format=ascii
• param=index_kp
• dateFrom=20090924
• dateTo=20091001

Complete URL/call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData?format=ascii¶m=index_kp&
dateFrom=20071225&dateTo=20080101

Which will give you something similar to the following if you open the URL in your web
browser.

If you’re writing a client application that will be consuming these data, the paradigm for reading
the data is the same. Any programming language or library that supports an HTTP GET is able
to make these calls and obtain and use the resulting data.

Obtaining Metadata

Again, recall the REST call template

<prefix>/<method>?<query_string>

In the case of Metadata, it relies on the GetMetadata method, so the first two components of the
call would be as follows (assuming you're using the primary site)

http://spidr.ngdc.noaa.gov/spidr/servlet/GetMetadata?

The metadata self describe has less information than data, since the GetMetadata call links to
metadata records instead of actual data. There is only one format, XML, currently adhering to
the FGDC schema standard. A param field is required to these calls.

Table 22 – GetMetadata parameters

Parameter Description

param Required. Defines the document from which
metadata are obtained. The detailed mapping
of what is supported is below.

Available Metadata Parameters to GetMetadata

Similarly to GetData, GetMetadata allows you to query for additional information to get the
metadata record you're after. The topmost starting point is similar to GetData, simply supply the
call with 'describe' without any additional elements in the query string and you'll get the topmost
information back.

http://spidr.ngdc.noaa.gov/spidr/servlet/GetMetadata?describe

Just like with the GetData call, you can provide a parameter to the describe call to drill down and
obtain more specific information about specific stations. e.g.

http://spidr.ngdc.noaa.gov/spidr/servlet/GetMetadata?describe¶m=cri

Unlike data, the GetMetadata call doesn’t have a third tier of metadata for a platform or section,
as it doesn’t pertain to metadata. Only data have an associated time range, which is what the
third tier supports. The GetMetadata call will accept such requests, but suggests that you
probably wanted the associated GetData call instead. e.g.

http://spidr.ngdc.noaa.gov/spidr/servlet/GetMetadata?describe¶m=cri.BKSN

In some cases there are differences between the theme/param in GetData and GetMetadata. For
example, ‘foF2’ (an ionospheric parameter) vs ‘iono’. The reason the metadata param value isn't
'foF2.BC840' is that foF2 isn't specific to the Boulder station. These parameters are designed to
allow you to obtain unique information about the data sets, and we are exploring what way might
be best to support the other param values, while still supplying useful information. These allow
you to request metadata about the particular resources you're currently obtaining data for. For
example, if you're requesting 'foF2.BC840' in a data call, you'll want 'iono.BC840' metadata. The
responses are all in XML format, adhereing to the schema they were entered into the virtual
observatory as, typically FGDC currently. In the future there may be more general, and more
specific keys, such as 1-1 mapping between data and metadata parameter names. If there are
formats, or other types of information you feel would be useful from the metadata service, please
contact us. We cannot improve in this area without input from the user community. Send email
to spidr-support@rt.ngdc.noaa.gov with your requests.

With all that said, constructing metadata requests is equally straightforward, and here are some
examples.

Metadata Examples

Here’s the metadata associated with the Boulder ionosonde station, so the <query_string> is:

• param=iono.BC840

Complete URL/call

http://spidr.ngdc.noaa.gov/spidr/servlet/GetMetadata?param=iono.BC840

Gives back an XML document containing all of the information pertinent to BC840 that looks
like this in a web browser (obviously you’ll want to parse it as XML in a program).

Example Basic REST Clients

 There are currently three example clients, written in IDL, MATLAB, and Perl. They may
serve as a starting point for subsequent client development, or you can simply use them as
another means for obtaining data from SPIDR by incorporating and using them as libraries in
another application. Each one provides another abstraction layer specific to the language for
obtaining data from SPIDR.

 Using these clients as a starting point, or as the basis for further development is very
straightforward. Once you've obtained the code, incorporating it, and consequently SPIDR's data
into your own applications is fairly easy.

IDL Rest Client

 Using the IDL client, all it takes to obtain SPIDR data is the following one line of IDL
code:

IDL> spidr = spidr_get_data('xs.goes11', [2008,1,1,0,0,0], [2008,1,31,23,59,59], /UNIX_TIME, verbosity=5)

Thereafter, you can use 'spidr' as you would any other structure in your IDL. This client is
independently maintained, as is its documentation.

You can find more information regarding the IDL client here.

MATLAB REST Client

 The MATLAB/Octave client is similarly straightforward, and is available here:
https://sourceforge.net/projects/spidr-matlab/

Python REST Client

 This client is at the very beginning stages of development, but provides essential data and
metadata features, it's available here:

http://spidr.ngdc.noaa.gov/spidr/friend.do?hlink=http://code.google.com/p/spidr-python/

Perl REST Client

 This client is the least featureful of the trio, but shows how easy it is to create simple
clients for consuming time series data.

It's only dependency is the LWP::Simple library, which is included with most Linux Perl
distributions. Getting data is a simple as defining a function as follows

The entire client can be downloaded from SPIDR here

Advanced Usage

In addition to the basic topics already covered, which focus on simple time series data access,
SPIDR also provides more advanced capabilities and formats from its RESTful web services, the
details of which follow. This advanced portion of the API provides different access mechanisms
as well as formats, and adheres to different data standards as well, including the Common Data
Model.

Common Data Model
The Common Data Model (CDM) is used to store multidimensional array data such as point
observations (e.g. earthquakes), station time series (e.g. geomagnetic variations), trajectories
(e.g. satellite tracks) and gridded fields (e.g. elevation model or air pressure variations with time
on a latitude-longitude grid). CDM is derived from and is compatible with the NetCDF and
HDF5 data models. The CDM object relations are shown in the Figure below.

an example function that minimally wraps the REST GetData call with only
required parameters. see the user's guide for the full complement.

sub get_data ($$$$) {

 # assign args
 my ($param) = shift(@_);
 my ($dateFrom) = shift(@_);
 my ($dateTo) = shift(@_);
 my ($format) = shift(@_);

 # build the url
 my $url = $_DATA_PREFIX . "param=" . $param . "&format=" . $format .
 "&dateFrom=" . $dateFrom . "&dateTo=" . $dateTo;

 # execute, take appropriate action based on $format
 my $content = get($url);

 if ($format !~ /zip/) {
 print $content . "\n\n";
 } else {
 my $file = "${param}_${dateFrom}_${dateTo}.zip";
 open (FILE,">$file") or die "Could not open file $file";
 print FILE $content;
 close(FILE);
 print "DONE. your content was stored in your current working directory, in file $file\n\n";
 }
}

Figure 1. Object relations in Common Data Model (CDM)

The CDM objects definitions:

• Group is a container for other objects. It contains variables, dimensions, attributes, and

other groups.

• Variable represents a multidimensional data array of specified type indexed by 1 or more

dimensions. A variable may have 0 or more attributes, which contain additional metadata.

• Dimension is a named index used to describe the shape of the data array stored in a

variable.

• Attribute is a name-value pair used to store additional metadata for groups and variables.

ESSE engine and data web services communicate data in CDM data objects in different formats.
Inside the engine it is serializable Java object. For distributed data exchange binary NetCDF or
its XML version NcML are used.

Common Query Language
To simplify for end user to query environmental data sources with different data models, such as
CDM array, binary data granule, plot image or web map, we have created the Common Query
Language (CQL). Instead of using different parameter set for each data source, as it was in the
previous versions of the ESSE engine, the data query now is formed from a limited number of
options, which are relevant to all the datasets integrated by ESSE. The QCL options can be
encapsulated in the Java bean DataRequestBean, which is be passed to the DSI methods as
an input parameter.

Below we illustrate the CQL data request options by examples of the REST data service calls.
RESTful web services are more simple and less platform dependable compared to SOAP
protocol, so everybody can access the REST service from a software client or by REST request
URL in a web browser.

The current version of CQL supports the following data query options:
Parameter Description Values
command command to be sent to

the data service
• get (default) – queries the getData activity; provides

the main functionality for getting data from service

• describe – queries the resource metadata in XML

format and shows an HTML page

dataset specifies parameter
name to query in a
resource specific
format

param[.vlevel[.#]]@theme[.source]
geom_z@Geom
geom_y.Geom_yr@Geom.yr
SkinTemperature.Surface@Weather
F13200512311748@DMSP.OIS

datefrom date-time before or
equal to the first data
sample

yyyy-mm-ddThh:mm:ssUTC

dateto date-time after or
equal to the last data
sample

yyyy-mm-ddThh:mm:ssUTC

location sets spatial constraints
for data query

• point: (39.0,27.5)

• station: BOU

format format for data export xml, ncml, echo(dmsp gralules list), jpg, png, tif, …
async sets asynchronous

mode for request
true enables the async requests

asyncorder ID of the
asynchronous data
order to check its
status or get result

Asynchronous RESTful Data Service
Selection of large chunks of data from a database or a tape library may require too much memory
or can take so long that the web service call will time out. The error can be either “not enough
memory” runtime exception or a web server timeout. To avoid the memory size error in a
synchronous web service we have introduced a throttling function which will estimate the size of
the data chunk before the actual data selection, and report an error to the client if the data size is
too large. However, this throttling mechanism is limiting the use of the RESTful services,
especially for tape library archive, where data selection takes several minutes to execute.

One solution for the time delay and the data size limitations is an asynchronous RESTful data
service. In this case we can split the large selection data into smaller parts which will fit into
server memory, and a client will receive the selection by calling the server several times, each
time receiving only a part of the overall request. The asynchronous data service protocol
becomes stateful and requires several types of messages, including request ID, request status,
and data. At the first call, the data service will return to client the data request ID. Using that ID,
a client application can repeatedly call the service again and again, each time receiving from the
server either a status report for the request, or a small chunk of the requested data.

Architecture of the asynchronous RESTful data service has three tires: REST service container,
OGSA-DAI data resource container, and a persistence storage backend. The REST service is
implemented as a Java servlet. Its purpose is maintain the asynchronous session with the client,
to translate HTPP get requests from client into SOAP requests to the OGSA-DAI data resource,
and to pass the OGSA-DAI service reply back to the client. The OGSA-DAI data resource
provides special activities for data querying and processing. It also has a queue to store state of
the data request, and to data pools. A disk data pool is used to work with the “slow” tape library.
“In memory” data pool is used to store small chunks of data received from the database backend.
The storage backend can be either a database or a tape library.

At the first call, the asynchronous RESTful data service always returns to client the data request
ID. Behind the scenes the service opens a stateful session for the client and redirects the request
to the OGSA-DAI activity, which will put the request into a queue. The client may specify that
the returned data should be split into smaller chunks. Then the OGSA-DAI activity will put
multiple requests into the queue, each for a separate chunk. A queue monitor inside the OGSA-
DAI container will check for free space in the data pool and for data selection requests in the
queue. If the pool is not full and the queue is not empty, it will select a chunk of data from
storage, save it in the pool, and delete the request from the queue.

Each subsequent client call in the asynchronous session must refer to the same request ID. The
RESTful service reply will depend on the session status. If the requested data is not ready yet,
the service will return status “processing”. If the data is not available, the service will return
status “error” and close the session. If the session was closed or does not exist, the service
returns “order <ID> not found”.

When the data selection gets ready, the next client call will receive from the server a web link to
the data granule in the disk pool or a chunk of data from memory pool. When all the selected
data will be sent to client, the asynchronous data request session will be closed. After that the
service call with the same request ID will return status “EOF”.

An example of the asynchronous data request to tape library storage is shown in figure 2. This is
a typical use case for remote sensing applications, where the satellite images from different
orbits are stored as binary granules on a robotic tape library. Image transfer from the library to
the online disk pool takes tens of seconds, so the asynchronous service is used to avoid timeouts.
The first call to service returns request ID and initiates data transfer from tape to disk. The next
service calls for this request ID will return status “processing” until the image will be copied
from tape to disk. After that a service call will return a link to the image on disk and close the
session.

Figure 2. Asynchronous data request to tape library

Streaming data service request can be used to select very large subset from a database. For
example, it can be time series for a long date interval from many stations. In this case the
OGSA-DAI activity getStreamData will split the single request from a client into multiple
requests to the database, each for one station and a streaming time window (a day, a month, etc.).
When called from the client, the RESTful data service will return a chunk of the whole subset.
The client should call the service as many times as the number of chunks in the subset (= number
of stations X number of time subintervals). For a gridded dataset, the total number of chunks will
be the number of grid points in the Region of Interest multiplied by the number of time
subintervals in the request time range (figure 3).

Figure 3. Asynchronous streaming RESTful data request to a database

SPIDR Advanced RESTful Web Service By Example

Metadata

Get the list of available data sets:
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2

Get the metadata for a given data set:
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?command=describe&dataset=@Geom

Synchronous get data

Get SPIDR time series

A. For minute geomagnetic variations

http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?format=xml&datefrom=2001-01-
01T00:00:00UTC&dateto=2001-01-
05T00:00:00UTC&dataset=geom_y@Geom&location=BOU

B. For hourly geomagnetic variations

http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?format=xml&datefrom=2001-05-
01T00:00:00UTC&dateto=2001-05-
03T00:00:00UTC&dataset=geom_z@Geom.hr&location=AIA

C. For IMF By

http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?dataset=imf_by
@ImfMin&location=ace&format=xml&datefrom=2001-01-01T00:00:00UTC&dateto=2001-01-
03T00:00:00UTC

D. For Kp index

http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?dataset=index_kp
@KpAp&format=xml&location=ALL&datefrom=2001-01-01T00:00:00UTC&dateto=2001-02-
01T23:59:00UTC

Get a SPIDR time series plot
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?dataset=index_kp
@KpAp&format=jpg&location=ALL&datefrom=2001-01-01T00:00:00UTC&dateto=2001-02-
01T23:59:00UTC

Which generates:

Get DART time series data

http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?format=xml&datefrom=2000-05-
01T00:00:00UTC&dateto=2000-05-
03T00:00:00UTC&dataset=Temperature.Surface@Dart&location=D157_1999

Get time series data from NWS weather forecast
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?format=xml&datefrom=2010-03-
01T00:00:00UTC&dateto=2010-03-
03T00:00:00UTC&dataset=SkinTemperature.Surface@Weather&location=(56,38)

Get DMSP granules list
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?datefrom=2006-01-
07T00:00:00UTC&dateto=2006-01-
14T23:59:59UTC&dataset=F13@DMSP&location=(55.0,42.0)&format=echo

Order DMSP granule for download (synchronously)
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?dataset=F13200512311748@DMSP.J4

Asynchronous Data Requests

Order DMSP granule for download (asynchronously):
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?dataset=F13200512311748@DMSP.J4&asyn
c=true

Check DMSP order status & get the result when finished:
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?dataset=F13200512311748@DMSP.J4&asyn
c=true&asyncorder=ORDER_ID

One minute geomagnetic variations, streaming by 1 day, asynchronously:
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?format=ncml&datefrom=2001-01-
01T00:00:00UTC&dateto=2001-01-
05T00:00:00UTC&dataset=geom_z@Geom&location=BOU×hift=d1&async=true

Get the data for the previous asynchronous request, returns a daily data chunk for each service
call
http://spidr.ngdc.noaa.gov/spidr/servlet/GetData2?format=ncml&dataset=geom_z@Geom&asyn
c=true&asyncorder=ORDER_ID

